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ABSTRACT 

Many of the  systems  encountered  in  the  real  world  are 
too  complex  and/or  too  ill-defined  to  be  susceptible  of  exact  analysis. 

The  concept  of  a  fuzzy  set,  that  is,  a  class  which  admits of intermediate 
grades  of  membership  in  it,  opens  the  possibility of analyzing  such 

systems  both  qualitatively  and  quantitatively  by  allowing  the  input  and/or 
the  output  and/or  the  state of the  system  to  range  over  fuzzy  sets.  In 

this  paper,  several  basic  concepts  relating to the  characterization  of 
discrete-time  fuzzy  systems  are  introduced  and  input-output-state 

equations  for  such  systems  are  developed. 
. 
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INTRODUCTION 

Many  of  the  advances  in  network  theory  and  system  theory 

during  the  past  three  decades  are  traceable  to  the  influence  and  contri- 

butions  of  Ernst  Guillemin,  Norbert  Wiener,  Richard  Bellman,  Rudolph 
Kalman,  and  their  students. In Sum, We  now  possess  an  impressive  aIma- 

mentarium  of  techniques  for  the  analysis  and  synthesis  of  linear  and  non- 
linear  systems  of  various  types - techniques  which  are  particularly  ef- 
fective  in  dealing  with  systems  characterized  by  ordinary  differential 
or  difference  equations  of  moderately  high  order  such as are  encountered 
in  network  theory,  control  theory  and  related  fields. 

What  we  still  lack,  and  lack  rather  acutely,  are  methods 
for  dealing  with  systems  which  are  too  complex  or  too  ill-defined  to  ad- 

mit  of  precise  analysis.  Such  systems  pervade  life  sciences,  social 
sciences,  philosophy,  economics,  psychology  and  many  other  "soft"  fields. 
Furthermore,  they  are  encountered  in  what  are  normally  regarded  as  "non- 
soft"  fields  when  the  complexity of a  system  rules  out  the  possibility 
of analyzing  it  by  conventional  mathematical  means,  whether  with  or  with- 

out  the  aid of computers.  Many  examples  of  such  systems  are  found  among 
large-scale  traffic  control  systems,  pattern  recognition  systems,  machine 
translators,  large-scale  information  processing  systems,  large-scale 

power  distribution  networks,  neural  networks  and  games  such  as  chess, 

checkers,  etc. 
Perhaps  the  major  reason  for  the  ineffectiveness  of  classi- 

cal  mathematical  techniques  in  dealing  with  systems  of  high  order  of  com- 

plexity  lies  in  their  failure to come  to  grips  with  the  issue  of  fuzzi- 
ness,  that  is,  with  imprecision  which  stems  not  from  randomness  but  from 
a  lack  of  sharp  transition  from  membership  in  a  class  to  non-membership 
in  it. It is  this  type of imprecision  which  arises  when  one  speaks,  for 
example, of the  class of real  numbers  which  are  much  larger  than 10, 

since  the  real  numbers  cannot  be  divided  dichotomously  into  those  that 
are  much  larger  than 10 and  those  that  are  not.  The  same  applies  to 
classes  such  as  "tall  men,"  "good  strategies  for  playing  chess,"  "pairs 
of  numbers  which  are  approximately  equal to one  another,"  "systems  which 
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are  approximately  linear,"  etc.  Actually,  most  of  the  classes  encounter- 

ed  in  the  real  world  are  of  this  fuzzy,  imprecisely  defined,  kind.  What 

sets  such  classes  apart  from  classes  which  are  well  defined  in  the  con- 

ventional  mathematical  sense  is  the  fuzziness  of  their  boundaries.  In 

effect,  in  the  case of a  class  with  a  fuzzy  boundary,  an  object  may  have 

a  grade  of  membership  in  it  which  lies  somewhere  between  full  membership 

and  non-membership. 

A class  which  admits  of  the  possibility  of  partial  member- 

ship  in  it  is  called  a  fuzzy  set.  In  this  sense,  the  class of tall  men, 

for  example,  is  a  fuzzy  set,  as  is  the  class  of  real  numbers  which  are 

much  larger  than 10. We  make  a  fuzzy  statement  or  assertion  when  some 

of  the  words  appearing  in  the  statement  or  assertion  in  question  are 

names  for  fuzzy  sets.  This  is  true,  for  example,  of  statements  such  as 

"John  is - 9  tall "x is  approximately  equal  to 5," "y  is  much  larger  than 
lo,"  etc.  In  these  statements,  the  sources  of  fuzziness  are  the  under- 

lined  words,  which,  in  effect,  are  labels  for  fuzzy  sets. 

1 

- 

Why  is  fuzziness so relevant  to  complexity?  Because  no 

matter  what  the  nature  of  a  system is, when  its  complexity  exceeds  a  cer- 

tain  threshold  it  becomes  impractical  or  computationally  infeasible to 

make  precise  assertions  about  it.  For  example,  in  the  case  of  chess  the 

size  of  the  decision  tree  is so large  that  it  is  impossible,  in  general, 

to  find a  precise  algorithmic  solution  to  the  following  problem:  Given 

the  position  of  pieces  on  the  board,  determine  an  optimal  next  move. 

Similarly,  in  the  case  of  a  large-scale  traffic  control  system,  the  com- 

plexity  of  the  system  precludes  the  possibility  of  precise  evaluation  of 

its  performance.  Thus,  any  significant  assertion  about  the  performance 

of  such  a  system  must  necessarily  be  fuzzy  in  nature,  with  the  degree  of 

fuzziness  increasing  with  the  complexity  of  the  system. 

How  can  fuzziness  be  made  a  part  of  system  theory? A tenta- 

tive  step  in  this  direction  was  taken  in  recent  in  which  the 

notions  of  a  fuzzy  system*  and  fuzzy  algorithm  were  introduced.  In  what 

* The  maximin  automata  of  Wee  and  Santos  (Refs. 4 and 5) may  be  regarded 
as  instances  of  fuzzy  systems. 
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follows,  we  shall  proceed  somewhat  further  in  this  direction,  focusing 
our  attention on the  definition  of a fuzzy  system  and  its  state. It 
should be emphasized,  however,  that  the  task  of  constructing a complete 

theory  of  fuzzy  systems  is one of very  considerable  magnitude,  and  that 
what  we  shall  have to say  about  fuzzy  systems  in  the  sequel  is  merely a 

first  step  toward  devising a conceptual  framework  for  dealing  with  such 
systems  in  both  qualitative  and  quantitative  ways. 
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CHAPTER I 

nEMENTARY PROPERTIES OF FUZZY SETS 

The  concept  of  a  fuzzy  system  is  intimately  related  to  that 

of  a  fuzzy  set.  In  order  to  make  our  discussion  self-contained,  it  will 

be  helpful  to  begin  with  a  brief  'summary  of  some  of  the  basic  definitions 

pertaining  to  such  sets. * 

Definition  of  a  fuzzy  set.  Let X = {x} denote  a  space  of  points  (objects), 

with x denoting  a  generic  element  of X. Then a fuzzy  set A in X is  a  set 
of  ordered  pairs 

- 

1.1 

where p (x) is  termed  the  grade  of  membership  of x in A .  Thus, if pA(x) 

takes  values  in  a  space M - termed  the  membership  space - then A is  essen- 

tially  a  function  from X to M. The  function p :X+M which  defines A is 

called  the  membership  function  of A .  When M contains  only  two  points 0 
and 1, A is  non-fuzzy  and  its  membership  function  reduces  to  the  conven- 

tional  characteristic  function  of  a  non-fuzzy  set. 

A 

A 

Intuitively,  a  fuzzy  set A in X is  a  class  without  sharply 
defined  boundaries,  that  is,  a  class  in  which  a  point  (object) x may  have 

a grade  of  membership  intermediate  between  full  membership  and  non-member- 

ship.  The  important  point  to  note  is  that  such a fuzzy  set  can  be  defined 

precisely  by  associating  with  each x its  grade  of  membership  in A .  In 

what  follows,  we  shall  assume  for  simplicity  that M is  the  interval  [0,1], 
with  the  grades 0 and 1 representing,  respectively,  non-membership  and 

* More  detailed  discussions  of  fuzzy  sets  and  their  properties  may  be 
found in  the  references  listed  in  the  Bibliography. 
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f u l l  membership i n  a fuzzy set. (More gene ra l ly ,  M can  be a p a r t i a l l y  

ordered set o r ,  more p a r t i c u l a r l y ,  a l a t t i c e . 6 )  Thus , our   bas ic  assump- 

t i o n  . w i l l  b e   t h a t  a fuzzy set A i n  X, even  though  lacking  in  sharply  de- 

f ined   boundar ies ,   can   be   p rec ise ly   charac te r ized   by  a membership  func- 

t i o n  which assoc ia tes   wi th   each  x i n  X a number i n   t h e   i n t e r v a l   [ 0 , 1 ]  

represent ing  the  grade  of  membership of x i n  A .  

Example. L e t  A = {x I x >> 1) ( i . e . ,  A is the  fuzzy set of real numbers 

which are much l a r g e r   t h a n   1 ) .  Such a set may be   def ined   subjec t ive ly  by 

a membership funct ion  such as: 

lJA(X) = 0 f o r  x 5 1 

= (1 + (x - 1 )  ) -2 -1 
f o r  x > 1 

1 :2 

It i s  i m p o r t a n t   t o   n o t e   t h a t   i n   t h e   c a s e  of a fuzzy   se t  i t  

is not  meaningful:   to  speak  of  an  object as belonging  or  not  belonging t o  

t h a t  set, excep t   fo r   ob jec t s  whose grade of  membership i n   t h e  set i s  

uni ty   or   zero.   Thus,   i f  A is t he   fuzzy   s e t   o f  t a l l  men, t h e n   t h e   s t a t e -  

ment  "John is ta l l "  should   no t   be   in te rpre ted  as meaning t h a t  John  be- 

l o n g s   t o  A .  Rather,   such a s ta tement   should  be  interpreted  as   an  asso-  

c i a t i o n  of  John  with  fuzzy set A - an a s s o c i a t i o n  which w i l l  be  denoted 

by John 5 A t o   d i s t i n g u i s h  it from  an a s s e r t i o n  of  belonging i n   t h e   u s u a l  

non-fuzzy  sense,   that  is, John E A ,  which is meaningful  only when A is 

non-fuzzy. * 

Containment. L e t  A and B be  fuzzy sets i n  X. Then A is conta ined   in  B 

(or  A is a subse t  of B) w r i t t e n  as A C B, if and only if 1-1 (X)  5 p g ( x )  
- - 

A 

* Here and   e l sewhere   in   th i s   paper  we s h a l l  employ the  convention  of 
underscoring a symbol wi th  a wavy b a r   t o   r e p r e s e n t  a f u z z i f i e d   v e r s i o n  
of t h e  meaning  of t h a t  symbol.  For  example, x E y w i l l  denote a fuzzy 
e q u a l i t y  of x and y ;  x 2 y w i l l  denote   fuzzy   impl ica t ion ,  etc. 
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for  all x in X. (In  the  sequel,  to  simplify  the  notation  we  shall  omit 

x when  an  equality  or  inequality holds for  all  values  of x in X.) 

Example. If pA = pBY then A C B. 

Equality. Two fuzzy  sets  are  equal,  written  as A = B, if  and  only  if 
- VA - pB' 

Complementation. A fuzzy  set A' is  the  complement  of a fuzzy  set A if 

and  only  if v = 1 - A' 

Example.  The  fuzzy  sets A = {x I x >> 1) and A' = {x I x not >> 1)  are 

complements  of  one  another. 

Union.  The  union  of A and B is  denoted  by A U B and  is  defined as the 

smallest  fuzzy  set  containing  both A and B .  The  membership  function  of 

A U B is  given  by vAuB = Max[pA,pB].  Thus,  if  at a point x, pA(x) = 0 . 9 ,  

say,  and v,(x) = 0 .4 ,  then  at  that  point  pAvB(x) = 0.9. 

As  in  the  case  of  non-fuzzy  sets,  the  notion  of  the  union 

is closely  related to that  of  the  connective  "or" . Thus, if A is a class 

of  tall  men, B is a class  of  fat  men  and  "John  is  tall"  or  "John  is  fat , ' I  

then  John  is  associated  with  the  union  of A and B. More  generally,  ex- 

pressed  in symbols, we  have 

x E A  or x E B  + x E A u B  -, I - 1.3 

Intersection.  The  intersection  of A and B is  denoted  by A n B and  is  de- 
fined  as  the  largest  fuzzy  set  contained  in  both A and B .  The  membership 

function  of A r7 B is  given  by p = Min[vA,pB].  It  is  easy  to  verify 

that A n B = (A' n B')'. The  relation  between  the  connective  "and"  and 

n is  expressed  by 

mB 
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-X E A and X E B  -+ X E A ~ B  1.4 - - ... 

Algebraic  sum. The a l g e b r a i c  - sum of A and B is denoted by A @ B and i s  

de f ined  by p A@B - PA + pg - vAB. It is t r i v i a l  t o   v e r i f y   t h a t  A @ B = 

(A'B') ' . 
- 

Rela t ion .   A . fuzzy   r e l a t ion ,  R,  i n   t he   p roduc t   space  X x Y = ( ( x , y ) ) ,  

x E X,  y E Y ,  is a fuzzy set. i n  X x Y cha rac t e r i zed  by a membership  func- 

t i o n  v which   assoc ia tes   wi th   each   ordered   pa i r   (x ,y)  a grade of  member- 

sh ip   vR(x ,y )   i n  R. More genera l ly ,   an   n -ary   fuzzy   re la t ion   in  a product 

space X = X' x X x . . . . X X" is a fuzzy set  i n  X cha rac t e r i zed  by an 

n -va r i a t e  membership func t ion  pR(xl, ..., xn) ,  x E X ,  i = l ,  ..., n .  

R 

2 

i 

Example. L e t  X = Y x R,  where R is t h e  real l i n e  (-m,m). Then x >> y 

is a f u z z y   r e l a t i o n   i n  R . A sub jec t ive   expres s ion   fo r  pR i n   t h i s  case 

might  be: p (x,y) = 0 f o r  x I y;  pR(x,y) = (1 + (x - Y ) - ~ ) - ~  f o r  x > y. 

2 

R 

Composition of r e l a t i o n s .   I f  R and R2 are two f u z z y   r e l a t i o n s   i n  X , 
then by the  composition of R and R2 is  meant a f u z z y   r e l a t i o n   i n  X 

which is denoted  by R 0 R2 and is  defined by 

2 
1 2 

1 

1 

where  the supremum is taken  over a l l  v i n  X. 

1.5 

Fuzzy sets induced  by  mappings. L e t  f :X+Y be a mapping  from X t o  Y ,  wi th  

t h e  image of x under f denoted  by y = f ( x ) .  L e t  A be a fuzzy set i n  X. 

Then,  the  mapping f induces a fuzzy set B i n  Y whose  membership func t ion  
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is  given by 

1.6 

where f (y)   denotes   the set of   po in ts  i n  X which are mapped by f i n t o   y .  -1 

Shadow of a fuzzy set. L e t  A be a fuzzy set i n  X x Y ,  and l e t  f denote 

t h e  mapping  which t akes   (x ,y )   i n to  x. The  fuzzy set i n  X which is induced 

by t h i s  mapping is c a l l e d   t h e  shadow (pro jec t ion)   o f  A on X and i s  denoted 

by  SX(A). In  consequence  of (1.6), t h e  membership funct ion  of  S (A) is  

given by 
X 

1.7 

where 1-1 (x,y) is t h e  membership func t ion  of A. A 

Conditioned  fuzzy sets. A fuzzy set B(x) i n  Y w i l l  be   s a id   t o   be   cond i -  

t i o n e d   0 n . x   i f  i ts  membership function  depends  on x as a parameter. To 

p l a c e   t h i s  dependence in   ev idence ,  we s h a l l   d e n o t e   t h e  membership  func- 

t i o n  of B(x) as pB(y I x) o r  - when B can  be  omitted  with  no  r isk of con- 

fus ion  - as p(y I x) .  

- 

Now suppose  that   the   parameter  x ranges  over a space X. Then, 

t he   func t ion  p (y I x) d e f i n e s  a mapping  from X to   t he   space   o f   fuzzy  sets 

defined  on Y. Through t h i s  mapping, a fuzzy set A i n  X induces a fuzzy 

set B i n  Y which is defined by 

B 

1.8 

where p and pB denote   the  membership func t ions   o f  A and B ,  r e s p e c t i v e l y .  A 
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In effect, (1.8) is  a  special  case  of  the  composition  of  relations (1.5). 

The  notion  of  a  conditioned  fuzzy  set  bears  some  resemblance 

to  the  notion  of  a  conditional  probability  distribution.  Thus, (1.8) is 

the  counterpart of the  familiar  identity 

1.9 

where  for  simplicity  x  and  y  are  assumed  to  be  real-valued, p (x)  denotes 
the  probability  density  of x, pB(y I x) denotes  the  conditional  probability 

density  of  y  given  x  and p,(y) denotes  the  probability  density  of  y.* It 
is  worthy  of  note  that,  in  this  as  well  as  many  other  instances  involving 

fuzziness  on  the  one  hand  and  probability  on  the  other,  the  corresponding 
formulae  differ  from  one  another  in  that  to  the  operations  of  summation 
and  integration  involving  probabilities  corresponds  the,  operation of tak- 

ing  the  supremum  (or  maximum) of membership  functions,  and to the  opera- 

tion  of  multiplication of probabilities  corresponds  the  operation of tak- 
ing  the  infimum  (or  minimum)  of  membership  functions.  To  make  this cor- 

respondence  more  evident,  it  is  convenient  to  use the symbols V and A f o r  

the  supremum  and  infimum,  respectively.  Then, (1.9) becomes 

A 

Similarly, (1.7) becomes 

1.10 

1.11 

* To simplify  the  notation,  we  use  the  same  symbol  to  denote  a  random  vari- 
able  and  a  generic  value  of  that  variable. 
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f o r  which its p robab i l i s t i c   coun te rpa r t   r eads  

1.12 

where x and y are assumed t o   r a n g e   o v e r   f i n i t e  sets and p (x) and  p,(y) 

d e n o t e   p r o b a b i l i t i e s   r a t h e r   t h a n   p r o b a b i l i t y   d e n s i t i e s  as i n  (1.9) .  
A 

This   concludes  our   br ief  summary of some of t h e   b a s i c  con- 

c e p t s   r e l a t i n g   t o   f u z z y  sets.  In what fol lows,  we s h a l l  employ these  

concepts   in   def in ing  a fuzzy  system  and  explore some of  the  elementary 

p r o p e r t i e s  of such  systems. 

10 
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CHAPTER I1 

SYSTEM, AGGREGATE AND STATE 

For   s imp l i c i ty ,  we s h a l l  restrict o u r   a t t e n t i o n   t o  time- 

invariant   discrete- t ime  systems  in   which t ,  t i m e ,  ranges   over   in tegers ,  

and  the  input  and  output a t  t i m e  t are real-valued. 

In   the  theory  of   non-fuzzy  discrete- t ime  systems,  it is  cus- 

tomary to   in t roduce   the   no t ion   of  s t a t e  a t  t he   ve ry   ou t se t  by de f in ing  a 

system a through i t s  

X t+l 
- - 

Y t  - 
- 

s t a t e  equat ions:  

where u denotes   the  t 

. 
t = ..., -1, 0 ,  1, . .. 

i npu t  a t  time t , yt  i s  the   ou tpu t  a t  time t an1 

is  the  s ta te  a t  time t ,  with  the  ranges of u y and x denoted by t '  t t 
Y and X ,  r e s p e c t i v e l y .   I n   t h i s  way, 

f:XxU+C and g:XxU+Y. The space X is 

po in t  a i n  X i s  c a l l e d  a s ta te  of a 

2 . 1  

Xt 
u ,  

a i s  cha rac t e r i zed  by  two mappings, 

c a l l e d   t h e  s ta te  space of a, and a -~ 

L e t  u denote   an   input   sequence   s ta r t ing  a t ,  s ay ,  t = 0. Thus, 

= uoul".u where u E U, t = 0 , 1 , . . . , E ,  E = non-negative  integer.  t 
The set of all sequences whose elements are drawn  from U w i l l  be  denoted 

by U*. 

Now, t o   each  s ta te  CL i n  X and  each  input  sequence u = u  u 0 1"' 
uR i n  U" w i l l  correspond  an  output  sequence y = yoyl..  .yE i n  Y*. The p a i r  

of sequences  (u,y) i s  ca l l ed   an   i npu t -ou tpu t   pa i r  of l eng th  R f l .  The 

t o t a l i t y  of   input-output   pairs ,   (u ,y) ,  of varying  lengths  which  correspond 

t o  a p a r t i c u l a r  s ta te  a i n  X w i l l  be   r e f e r r ed   t o  as an  aggregate of input- 
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o u t p u t   p a i r s ,  or simply an aggregate ,  a<a), w i t h  a p l a y i n g   t h e   r o l e  of 

a l a b e l   f o r   t h i s   a g g r e g a t e .  The union 

r e p r e s e n t s   t h e   t o t a l i t y  of  input-output  pairs  which  correspond  to a l l  

t he  states of a. It is t h i s   t o t a l i t y  of i npu t -ou tpu t   pa i r s   t ha t  we 

sha l l   equa te   w i th  a. 
The f a c t   t h a t  a state is merely a labe l   for   an   aggrega te   sug-  

ges t s   tha t   the   concept  of  an  aggregate  be  accorded a c e n t r a l   p l a c e  among 

the  basic  concepts  of  system-theory.  This is done i m p l i c i t l y   i n  [8] and 

[9], and e x p l i c i t l y   i n   [ l o ] .  The po in t  of   departure   in   the  theory  devel-  

oped i n  [8] is t h e   d e f i n i t i o n  of a system as a c o l l e c t i o n  of input-output 

pairs.  An aggregate ,   then,  may be  defined as a subse t  of input-output 

pairs  which s a t i s f y   c e r t a i n   c o n s i s t e n c y   c o n d i t i o n s ,   w i t h  a s ta te  playing 

t h e   r o l e  of a name for  an  aggrega.te.  

I n  what fol lows,  we s h a l l   f i r s t   g e n e r a l i z e   t o   f u z z y   s y s t e m s  

the  conventional  approach  in  which a system is described  through i ts  

s ta te  equat ions .  Then we s h a l l   i n d i c a t e  a connection  between  the  notion 

of a fuzzy  a lgori thm and a fuzzy  system.  Finally,  w e  s h a l l   p r e s e n t   i n  a 

summary form some of t h e   b a s i c   d e f i n i t i o n s   r e l a t i n g   t o   t h e   n o t i o n  of an 

aggregate  and b r i e f ly   t ouch  upon the i r   gene ra l i za t ion   t o   fuzzy   sys t ems .  

12 



CHAPTER 111 

STATE  EQUATIONS __ FOR FUZZY SYSTEMS 

Let  ut and  x  denote,  respectively,  the  input,  output ' yt t 
and  state of a system a at  time t. Such  a  system  is  said  to  be  deter- 
ministic  if  it  is  characterized  by  state  equations  of  the  form 

X t+l = f (X,,U,> t = -1, 0, 1, 2 ,  ..., 3 . 1  

3 . 2  

in  which f and g are  mappings  from  XxU to X and Y, respectively. 

a is  said  to be non-deterministic  if x and/or yt are  not t+l 
uniquely  determined  by  x  and u Let Xt+l(xt,ut)  and Y  (xt,ut) or X 
and Yt, for  short,  denote,  respectively,  the  sets of possible  values of 

x and  y  given  x  and  u  Then ( 3 . 1 )  and ( 3 . 2 )  can be replaced  by 

equations  of  the form 

t+l 
t t' 

t+l t' t t' 

Xt+' = F(xt  ,ut) 

Yt = G(xt,ut) 

3 . 3  

3 . 4  

where  F  and  G  are  mappings  from  XxU  into  the  space  of  subsets  of C and Y, 
respectively.  Thus,  a  non-deterministic  system is characterized  by  equa- 

tions of the  form (3 .3)  and ( 3 . 4 ) '  in  which Xt+'  and Y are  subsets of X 
and Y, respectively. 

t 

The  next  step  in  the  direction of further  generalization  is 

to  assume  that Xt+' and Y are  fuzzy  rather  than  non-fuzzy  sets  in X and t 



Y, respectively.  In  this  case,  we  shall  say  that a is  a  fuzzy  discrete - 
time  system.  Clearly,  such  a  system  reduces  to a non-deterministic  sys- 

tem  when  Xt+l and Y are  non-fuzzy  sets.  In  turn,  a  non-deterministic 

system  reduces  to  a  deterministic  sys'tem  when Xt+' and Y are  single 

points  (singletons)  in  their  respective  spaces. 

t 

t 

Let pX(xt+l I xt,ut)  and 1~ (y I xt,ut)  denote  the  member- Y t  
ship  functions  of Xt+' and Yt, respectively,  given  x  and  ut.  Then  we 

can  say  that a is  characterized  by  the  two  membership  functions p (x I 
x  u ) and 1.1 (y I x ,u ) , which  define  conditioned  fuzzy  sets  in X and 
Y, respectively,  involving  x  and  u  as  parameters. 

t 

x t+l 

t' t Y t  t t  

t t 

To  illustrate, suppose that X = R . Then 61 is a  fuzzy  sys- 3 

tem  if  its  characterization  contains  statements  such  as:  "If  an  input 

u = 5 is  applied to a in  state  xt = (3,5,1)  at  time t , then  the  state 
of a at  time t = 1 will  be  in  the  vicinity  of  the  point (7,3,5) . ' I  Here 

the  set  of  points  in X which  lie  in  the  vicinity  of  a  given  point CL is  a 

fuzzy  set  in X. Such  a  set  may  be  characterized  by  a  membership  function 

such  as 

t 

1 
k lJ(x> = exp - - IIx - all 3.5 

where  x  is  a  point  in X, nx - all denotes  a  norm  of  the  vector  x - a, and 
k is  a  positive  constant. 

By  analogy  with  non-fuzzy  systems, a fuzzy  system a will be 
said  to  be  memoryless  if  the  fuzzy  set Yt  is independent  of x that is, 

if  its  membership  function  is  of  the  form  uy(yt I ut). Just  as  a  non- 

fuzzy  memoryless  system is characterized  by  a  graph  y = g(ut), ut E U, 

so a  fuzzy  memoryless  system is characterized  by  a  fuzzy  graph  which  is 

a  family  of  fuzzy  sets {Y (ut),  ut E V I .  

t' 

t 

t 

14 



In the  case  of a memoryl-ess  system,  to  each  point  u in U 
t t t 

corresponds a fuzzy  set Y (ut), or Y.. for  short,  in Y. Thus,  we  can 
write 

Yt = G(ut) t = ..., -1, 0, 1, 2, ..., 3 . 6  

where G is a function  from R1 to the  space of fuzzy  sets  in  Y.  Now  in 
consequence  of ( 1 . 8 )  , this  implies  that  if  Ut  is  a  fuzzy  set in U char- 

acterized  by  a  membership  function  pU(ut),  then  to U will  correspond 
the  fuzzy  set Yt defined  by  the  membership  function 

t 

3.7 

where V and A denote  the  supremum  and  minimum,  respectively.  Thus, ( 3 . 7 )  

establishes  a  relation  between  U  and  Y  which  can  be  expressed  as t t 

Yt = Go(U ) t t = ..., -1, 0, 1, 2, ..., 3 . 8  

where G is  a  function from the  space of fuzzy sets  in U to  the  space  of 
fuzzy  sets  in Y. 

0 

The  important  point  to  be  noted  here is that  equation ( 3 . 6 ) ,  

which  expresses Yt as  a  function  of  u  induces  equation ( 3 . 8 )  , which  ex- 
presses Yt  as a  function  of U . As should  be  expected, (3 .8 )  reduces  to 
( 3 . 6 )  when Ut  is taken to be  the  singleton  {u 1 .  

t t y  

t 

Intuitively, ( 3 . 6 )  and ( 3 . 8 )  may be  interpreted  as  follows. 

If a is a  fuzzy  memoryless  system,  then  to  every  non-fuzzy  input  u  at 
time t corresponds  a  unique  fuzzy  output  which is represented  by  a 

t 



condi t ioned  fuzzy set Yt i n  Y. The membership func t ion   o f   t h i s   fuzzy  

set is given by  uY(yt 1 u t ) .  

I f   t h e   i n p u t   t o  a is fuzzy,  i.e., i s  a fuzzy set Ut i n  U ,  

then  the  corresponding  fuzzy  output  Yt is given  uniquely by (3.8). The 

membership func t ion  for Yt is expressed by (3.7).  

As a very  simple  example,  suppose  that U and Y are f i n i t e  

sets: U = {1,2 ,3)  and Y = {1,2,31.  Furthermore,  suppose  that i f   t h e  

input  u i s  1, then   the   ou tput  i s  a fuzzy set desc r ibed   ve rba l ly  as "y  

is  approximately e q u a l  t o  1." S i m i l a r l y ,   i f  u = 2 ,  then y i s  approxi- 

ma te ly   equa l   t o  2,  and i f  u = 3,  then  yt is approximate ly   equal   to  3. 

More concre te ly ,  we assume t h a t  p (y I u ) is def ined  by the   t ab l e :  

t t 

t t 

t 

Y t  t 

1 ) = 1  ; lJy ( 2  

2)  = 0.2  ; UT (2 

3) = 0.1 ; Py(2 

1 1) = 0 . 3  ; P Y ( 3  ] 1 )  = 0.1 ; 

j 2 ) = l  ; P y ( 3  I 2)  = 0.2 ; 

I. 3) = 0.2 ; Py(3  I 3) = 1 ; 

Now assume t h a t   t h e   i n p u t  i s  a fuzzy set descr ibed  ver-  

b a l l y  as ''ut i s  c l o s e   t o  1," and cha rac t e r i zed  by t h e  membership  func- 

t ion  

Then,  by using (3.7) t he   r e sponse   t o   t h i s   fuzzy   i npu t  i s  found to   be  

a fuzzy set def ined by t h e  membership func t ion  

16 



It is convenient   to   regard  (3 .8)  as a mapping  from names of 

fuzzy sets i n  u t o  names  of fuzzy sets i n  Y. I n  many cases   o f   p rac t i ca l  

i n t e r e s t   s u c h  a mapping can  be  adequately  character ized by a f i n i t e ,  and 

perhaps   even   fa i r ly  small, number of po in t s   (o rde red   pa r i s  (U,Y)) on t h e  

graph of Go. For  example, G might  be  characterized  approximately by a 

tab le   such  as shown below.  (For  simplicity w e  suppress   the   subscr ip t  t 

i n  u and y ) 

0 

t t ' 

1 

1.1 

1 

1.6 1 . 2  

1.3 
.., - 
_I _. 

1 . 4  

1 .7  

2.5 1 .6  

2 .9  1 .5  

2.5 

2 .1  __ 
1 .8  1.8 

1 .9  1 .6  

2 1.5 

2 . 1  1 .5  

_. _. 

_. _I 

w. _I 

" 

y. - 
.- - 
I u. 

_. _w 

where x, x E R, is t h e  name fo r   t he   fuzzy  set of real numbers  which are 

a p p r o x h a t e l y   e q u a l   t o  x. Such a set may be   cha rac t e r i zed   quan t i t a t ive ly  

by a membership f u n c t i o n .   I n  many p r a c t i c a l   s i t u a t i o n s  a very  approxi- 

mate d e s c r i p t i o n  of t h i s  membership func t ion  would b e   s u f f i c i e n t .   I n  

t h i s  way, equat ion  (3 .8)  can  serve  the  purpose of an  approximate  charac- 

t e r i z a t i o n  of a fuzzy  memoryless  system. 

- 

17 



Turning  to  non-memoryless  fuzzy  systems,  consider  a  system 

a which  is  characterized  by  state  equations  of  the  form 

Xt+l 
= F(x,,ut) 3 . 9  

Yt = G(xt,ui) 3.10 

where  F  is  a  function  from  the  product  space  XxU  to  the  space  of  fuzzy 

sets  in  X, G is  a  function  from  XXU  to  the  space  of  fuzzy  sets  in Y, X 

denotes  a  fuzzy  set  in  X  which is conditioned  on  x  and  u  and  Y  denotes 

a  fuzzy  set  in  Y  which,  like Xt+’, is conditioned on x  and  u Xt+’  and 

Y represent,  respectively,  the  fuzzy  state  and  output  of a at  time t 
and  are  defined  by  the  membership  functions  pX(xt+l I xt  ,ut> and 

t+l 

t 
t t’ 

t t t’ 

uy(Yt I Xt’Ut). 

Equations ( 3 . 9 )  and  (3.10)  relate  the  fuzzy  state  at  time 

t+l  and  the  fuzzy  output  at  time t to  the  non-fuzzy  state  and  non-fuzzy 

input  at  time t. As in  the  case  of  a  memoryless  system,  we  can  deduce 

from  these  equations - by  repeated  application  of (1.8) - the  state  equa- 
tions  for a for  the  case  where  the  state  at  time t or  the  input  at  time 

or  both  are  fuzzy. 

Specifically,  let us assume  that  the  state  at  time t is  a 

fuzzy  set  characterized  by  a  membership  function p (x 1. Then,  by  apply- 

ing (1.8), we deduce  from (3.9) and (3.10). 
X t  

x t 

3.11 

3.12 

18 



which  in  symbolic form may  be  expressed  as 
* 

Xt+l 
= Fo(X ,ut> 

Yt = Go(Xt,ut) 

t 3.13 

3.14 

In  what  follows,  to  simplify  the  appearance  of  equations  such 
as (3.11)  and  (3.12), we  shall  omit  the  subscripts X and Y  in  membership 
functions. 

By n-fold  iteration of (3.13)  and  (3.14), we can  obtain  ex- 
pressions  for  X  and Y , n = 1, 2 ,  3, . . . , in  terms of X and  u tin t 

t’ * ’ * ’  

U t+n - For  example,  for n = 1, we  have 

or more  compactly 

3.15 

3.16 

3.17 

3.18 

To express  (3.17)  and  (3.18)  in  terms  of  membership  functions, 
we  note  that  on  replacing t with  t+l  in  (3.11)  and  (3.12),  we  obtain 

* 
Note  that  pX(xt+l)  and p (x ) represent  different  membership  functions. X t  

Strictly  speaking,  we  should  write  them  as p ) and LI (x,) , res- 
pectively. 

t+l (Xt+l X Xt 

I 



3.19 

3.20 

Then,  on  substituting U(X~+~) from (3.11)  into  (3.19)  and 

(3.20),  we get 

3.21 
and 

3 . 2 2  

which  by  virtue  of  the  distributivity  of V and A may  be  expressed  as 

and  likewise  for  larger  values of n. It should be noted  that  these  rela- 

tions  are  fuzzy  counterparts  of  the  corresponding  expressions  for  stochas- 

tic  systems,"  with A and V replacing  product  and  sum,  respectively,  and 

membership  functions  replacing  probability  functions  (see  (3.6) " et  seq.). 

In  the  above  analysis,  we  have  assumed that the  successive 

inputs ut, ..., u are  non-fuzzy.  On  this  basis,  we  can  obtain  expressions 
t+n 

I 



f o r  X , . . . , Xth+' and Yt , . . . , Yt* i n  terms of X and  ut , . . . , u t+l t 
tin 

It is n a t u r a l   t o  raise the   ques t ion  of  what are the  corresponding  expres- - 

t+l s i o n s   - f o r  X , . . . , Xtf"+' and Y t ,  . . . , Yth when the   success ive   inputs  

are fuzzy. 

F i r s t ,  l e t  us   focus   our   a t ten t ion  on t h e  state equat ions 

(3 .3)  and ( 3 . 4 1 ,  i n  which F and G are funct ions  f rom XxU to   fuzzy  sets 

i n  X and Y, r e spec t ive ly .  Suppose t h a t   b o t h   t h e   i n p u t   a t  time t and t h e  

state at time t are fuzzy. What would  be the   expres s ions   fo r   t he  member- 

sh ip   func t ions   o f  Xt+' and Yt i n   t h i s   s i m p l e  case? 

L e t  v(xtYut)  denote  the membership func t ion  of the  fuzzy set 

whose elements are o rde red   pa i r s   (x t , u t ) .  Then, using (1.8) we can 

expres s   t he  membership func t ions  of X t + l  and Yt  as follows: 

* 

3.25 

3 . 2 6  

L L  

These  formulae  assume a simpler  form when p(xt,ut)   can be 

expressed as 

where p(x ) and  p(ut)   denote ,   respect ively,   the  membership function  of 

the   fuzzy  state and  the  fuzzy  input  a t  t i m e  t .  I n   t h i s  case, we s h a l l  

s ay   t ha t   t he   fuzzy  sets Xt and U are non- in te rac t ing .   Essent ia l ly ,   the  

t 

t 

* 
The p r o b a b i l i s t i c   c o u n t e r p a r t   o f   t h i s  membership  function is t h e   j o i n t  

p r o b a b i l i t y  of x  and  u. 

21 



notion  of   non-intersect ion  of   fuzzy sets co r re sponds   t o   t he   no t ion  of  in- 

dependence  of random v a r i a b l e s .  

The assumption  that  X and Ut are non-interact ing  fuzzy sets t 

is a reasonable   one   to  make i n  many c a s e s   o f   p r a c t i c a l   i n t e r e s t .  Under 

this  assumption,  (3.25) and  (3.26)  reduce t o  

3.28 

3.29 

L L  

It should  be  noted  that   the  same expressions  can  be  obtained 

by applying  (1.8)  to  (3.13)  and  (3.14) , wi th   t he   i npu t  a t  time t assumed 

t o   b e  a fuzzy set cha rac t e r i zed  by p(u ). t 

In  syabolic  form,  (3.28)  and  (3.29)  can  be  expressed as 

Xt+l t t  
= Foo(X ,u  1 

yt = G ( X t , u t >  
00 

3.30 

3.31 

where F and Goo are, respec t ive ly ,   func t ions   f rom  the   p roduct   space   o f  

fuzzy sets i n  X and  fuzzy sets i n  U t o   t h e   s p a c e  of  fuzzy sets i n  X and 

fuzzy sets i n  Y. Thus,   (3.30)  expresses  the  fuzzy s ta te  a t  time t+l as 

a funct ion  of   the  fuzzy state a t  time t and  the  fuzzy  input a t  t i m e  t .  

Similar ly ,   (3 .31)  expresses the  fuzzy  output  a t  time t as a funct ion  of  

the  fuzzy s ta te  a t  t i m e  t and the   fuzzy   input  a t  time t. Note that   (3 .30)  

is induced via  (1.8) by (3.9),   which  expresses  the  fuzzy s ta te  a t  t i m e  t+l 

as a function  of  the  non-fuzzy state a t  t i m e  t and  the  non-fuzzy  input a t  

time t. The same is true  of  (3.31)  and  (3 . l o ) .  

00 
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A simple  numerical  example w i l l  serve t o   i l l u s t r a t e   t h e   u s e  

of  the  formulae  derived  above.  Specifically,  l e t  us   cons ider  a fuzzy 

system  with  binary  input  and  output,  U = Y = {O, l j ,   and   f i n i t e  state 

space X = {a, f3,y). Suppose t h a t   t h e  membership func t ions  P ( X ~ + ~  I xt ,ut)  

and  v(yt [ x ,u  ) f o r   t h i s   s y s t e m  are charac te r ized  by the   fo l lowing  ta- 

b l e s  
t t  

u = o  t u = 1  t 

o! 1 

B 0 .7  

Y 0 . 3  

u = o  u = 1  t t 

* * 
Fur the r ,  assume t h a t  XL and UL are cha rac t e r i zed  by t h e  mem- 

be r sh ip   func t ions   t abu la t ed  below. 



It should be n o t e d   t h a t ,  as in  the case of a memoryless  fuzzy 

system, (3.30) and (3.31) can  be  used to   provide  an  approximate  charac-  

t e r i z a t i o n  of a non-memoryless  fuzzy  system. To i l l u s t r a t e ,  le t  us  em- 

ploy  the  convention  introduced earlier, namely,  using  the symbol x t o  

denote   the name of a fuzzy set o r  real numbers  which are approximately 

e q u a l   t o  x.  Then,  viewed as re la t ions   be tween names of  fuzzy sets, (3 .30)  

and  (3.31) may take  the  appearance  of   tables   such as shown below: 

- 

Yt : 

where f o r   s i m p l i c i t y  we  r e s t r i c t e d  x and u t o   i n t e g r a l   v a l u e s .  More gen- 

e r a l l y ,   t h e   e n t r i e s   i n   t h e s e   t a b l e s  would  be names for   fuzzy  sets i n  X ,  

U and Y,  and only a f i n i t e  number of  such names  would be  used as repre- 

sentative  samples  (paradigms)  of  the  fuzzy sets i n   t h e i r   r e s p e c t i v e   s p a c e s .  

So f a r ,  we h a v e   r e s t r i c t e d   o u r   a t t e n t i o n   t o   t h e  case where a 

s ing le   fuzzy   input  U is a p p l i e d   t o   i n  s ta te  X . F o r   t h i s  case, we t t 

found  expressions  for  Xtfl and Yt i n  terms of X and U . The same approach 

can  readi ly   be  extended,   however ,   to   the case where t h e   i n p u t  i s  a sequence 

of   non-interact ing  fuzzy  inputs  U U ... Ut+n , n L 1. The assumption  of 

t t 
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non- in t e rac t ion   imp l i e s   t ha t  

ll(ut, . . . , u 1 = ll(Ut) A u(ut+l) A - 0 .  * v(ut+J t.tn 3.32 

To i l l u s t r a t e ,  l e t  n - 1. Then by apply ing   (1 .8)   to  (3.23) 

and (3.24) , we ob ta in  

3 .33  

As i n   t h e  case of s tochas t i c   sys t ems ,   fo r   h ighe r   va lues  of 

n such   re la t ions   can  be  expressed more compactly  through  the  use  of  vec- 

t o r  and matr ix   notat ion.   For   our   purposes ,   the  s imple  case of n = 1 con- 

s i d e r e d   a b o v e   s u f f i c e s   t o   i l l u s t r a t e   t h e  main f e a t u r e s  of t he  method  which 

can  be  used t o  compute the   fuzzy   s ta te   and   fuzzy   ou tput   o f  a system a t  t h e  

end  of a f in i t e   s equence  of   non-interact ing  fuzzy  inputs .  



CHAPTER IV 

WZZY SYSTEMS AM) FUZZY ALGORITHMS 

A s  w a s  shown i n  a recent   no te ,   the   no t ion   of  a fuzzy  system 3 

bea r s  a c l o s e   r e l a t i o n   t o   t h a t  of a fuzzy  a lgori thm. 

Roughly speaking, a fuzzy  a lgori thm is an   a lgor i thm  in  which 

some o f   t he   i n s t ruc t ions  are fuzzy   i n   na tu re .  Examples  of  such  instruc- 

t i o n s  are: (a )   Increase  x s l i g h t l y   i f  y i s  s l i g h t l y   l a r g e r   t h a n  10; 

(b) Decrease u u n t i l  i t  becomes much smaller than v; (c)  Reduce  speed if 

the  road i s  s l ippe ry .  The sources  of f u z z i n e s s   i n   t h e s e   i n s t r u c t i o n s  

are the  underlined  words.  

More gene ra l ly ,  w e  may view a fuzzy  a lgori thm as a fuzzy SYS- 

t e m  A cha rac t e r i zed  by equat ions  of t h e  form: 

X t + l  = F(Xt ,Ut) 4 . 1  

Ut = H(Xt) 4 . 2  

where Xt is a fuzzy state of A a t  time t ,  U is a fuzzy  input   ( represent-  

i ng  a fuzzy   ins t ruc t ion)  a t  time t ,  and X t + l  is the  fuzzy s ta te  a t  time 

t+l resu l t ing   f rom  the   execut ion  of t he   fuzzy   i n s t ruc t ion   r ep resen ted  by 

U t .  A s  seen  from  (4.1)  and ( 4 . 2 )  , t h e   f u n c t i o n  F defines  the  dependence 

of the   fuzzy  state a t  time t+l on the   fuzzy  state a t  time t and the   fuzzy  

input  a t  time t ,  while the   func t ion  H describes  the  dependence  of  the  fuzzy 

input  a t  t i m e  t on  the  fuzzy s ta te  a t  time t .  

t 

To i l l u s t r a t e   ( 4 . 1 )  and  (4.21, w e  s h a l l   c o n s i d e r  a very s i m -  

p l e  example.  Suppose t h a t  X is a fuzzy  subset   of  a f i n i t e  s e t  X = 

{a1, a2,  a3, a,) and Ut is  a fuzzy  subset  of a f i n i t e  set U = { B  1, B 2 1 .  
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Since   the  membership func t ions  of Xt and Ut are mappings  from, r e s p e c t i v e l y ,  

X and U t o   t h e   u n i t  interval, these   func t ions   can   be   represented  as p o i n t s  

i n   un i t   hype rcubes  i n  R4 and R2, which we shal l   denote   for   convenience  by 
4 C and C . Thus, F may be  defined  by a mapping  from C4 x C2 t o  C and H 2 4 

by a mapping  from C4 t o  C . For  example, i f   t h e  membership func t ion  of 

X is rep resen ted  by t h e   v e c t o r  (0.5, 0.8, 1, 0.6) and t h a t  of Ut by t h e  

v e c t o r  (1, 0.21, t hen   t he  membership func t ion  of Xt+' would be  def ined by 

F as a v e c t o r ,   s a y ,  (0.2, 1, 0.8, 0.4) ,  whi le   t ha t   o f  U would  be  defined 

by H as a vec to r ,   s ay  (1, 0.2). 

2 

t 

t 

It is clear t h a t  even in   the  very  s imple  case  where X and U 
are small f i n i t e  sets, i t  i s  i m p r a c t i c a b l e   t o   a t t e m p t   t o   c h a r a c t e r i z e  F 

with  any  degree  of   precis ion as a mapping  from a product of uni t   hyper-  

cubes   to  a unit  hypercube.  Thus, i n   g e n e r a l ,  i t  would  be  necessary  to re- 

sort t o  an  approximate  def ini t ion  of  F and H through  the  process  of exem- 

p l i f i c a t i o n ,  as w a s  done i n   t h e   c a s e  of t h e   r e l a t i o n  between Y t  and Ut i n  

Chapter 3 ( E q .  ( 3 . 8 )  - e t  x.). This  amounts t o   s e l e c t i n g  a f i n i t e  number 

of sample  fuzzy sets i n  X and U, and   t abu la t ing   f i n i t e   app rox ima t ions   t o  

F and H as  mappings  from  and t o  the names of these  fuzzy sets. I n   t h i s  

l i g h t ,   a n   i n s t r u c t i o n   s u c h  as "Reduce speed i f   t h e   r o a d  i s  s l ippe ry"  may 

be  viewed as an  ordered p a i r  i n  H involv ing   the  names  of fuzzy sets: 

"Reduce speed"  and "Road is s l i p p e r y . "  

Consider now the   fo l lowing   s i t ua t ion .  One is given  an  instruc-  

t i o n   o f   t h e  form: "If x i s  much l a r g e r   t h a n  1 make  y equal t o  2. Other- 

w i s e  make  y e q u a l   t o  1." Furthermore,   the membership func t ion   o f   t he   c l a s s  

of  numbers  which are much l a r g e r   t h a n  1 is  s p e c i f i e d   t o  be 

q x )  = 0 f o r  x < 1 

= (1 + (x - 11-2)-l f o r  x 1 1 4.3 

where E denotes   the  class i n   q u e s t i o n  and 1-1 is i ts  membership funct ion.  E 
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Now suppose  that  x = 3.  How should   the   above   ins t ruc t ion  

be  executed? Note t h a t  ~ ~ ( 3 )  = 0.8. 

The  answer t o   t h i s   q u e s t i o n  is t h a t   t h e   g i v e n   i n s t r u c t i o n  

does   no t   cove r   t h i s   con t ingency   o r ,   f o r   t ha t  matter, a n y   s i t u a t i o n   i n  

which x is a number such   tha t   pE(x)  > 0. S p e c i f i c a l l y ,   t h e   i n s t r u c t i o n  

i n   q u e s t i o n  tells u s   o n l y   t h a t   i f   t h e   i n p u t  is a fuzzy set  cha rac t e r i zed  

by t h e  membership func t ion  ( 4 . 3 )  , then  y = 2 ;  and i f   t h e   i n p u t  i s  char- 

a c t e r i z e d  by t h e  membership func t ion  1 - vE(x),  then  y = 1. Now when x 

i s  s p e c i f i e d   t o   b e   e q u a l   t o  3 ,  t he   i npu t  may be  regarded as a fuzzy se t  

whose  membership func t ion  is e q u a l   t o  1 f o r  x = 3 and  vanishes  elsewhere. 

This  fuzzy set  is n o t   i n   t h e  domain o f   t h e   i n s t r u c t i o n  - viewing  instruc-  

t i o n  as a func t ion   def ined  on a co l lec t ion   of   fuzzy  sets. 

In  some cases, i t  may be  permissible   to   extend  the domain  of 

d e f i n i t i o n   o f  a fuzzy   i n s t ruc t ion  by an   appropr i a t e   i n t e rp re t a t ion  of i ts  

in t en t .   Fo r  example, i n   t h e  case considered  above i t  may be  reasonable  

t o  assume t h a t  y = 2 n o t   j u s t   f o r   t h e   f u z z y  set of  numbers  which are much 

l a rge r   t han  1, b u t   a l s o   f o r  a l l  fuzzy   subse ts   o f   th i s  set whose maximal 

grade of membership  exceeds o r  i s  e q u a l   t o  a p resc r ibed   t h re sho ld ;   o r ,  i t  

may be   r easonab le   t o  assume t h a t  y = 2 f o r  a l l  x whose grade  of member- 

s h i p   i n  E is g r e a t e r   t h a n   o r   e q u a l   t o  a threshold  a. Al te rna t ive ly ,   t he  

domain of   the  instruct ion  can  be  extended by  employing  randomized  execu- 

t i o n ,   t h a t  i s ,  by choosing y = 2 and y = 1 f o r  a given x w i t h   p r o b a b i l i t i e s  

u,(x) and 1 - uE(x) ,   respect ively.   These  and  other  ways  of extending  the 

domain  of fuzzy   i n s t ruc t ions  make t h e   s p e c i f i c a t i o n   o f  F and H a problem 

which,   though  nontr ivial ,  is well within  the  range  of   computat ional   feasi-  

b i l i t y   i n  many cases of p r a c t i c a l  interest. 

Actually,  crude  forms of fuzzy  a lgori thms are employed q u i t e  

ex tens ive ly   i n   eve ryday   p rac t i ce .  A cooking  recipe i s  an  example  of  an 

a lgo r i thm  o f   t h i s   t ype .  So is t h e  set o f   i n s t ruc t ions   fo r   pa rk ing  a car 

o r   r e p a i r i n g  a TV set. The effect iveness   of   such  a lgori thms  depends  in  
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l a r g e  measure on the   ex is tence   o f  a fuzzy  feedback  which makes i t  possi-  

b l e   t o   o b s e r v e   t h e   o u t p u t  and  apply a cor rec t ive   i npu t .   I ndeed ,   t h i s  i s  

i m p l i c i t   i n   e q u a t i o n  ( 4 . 3 1 ,  e x c e p t   t h a t   i n   p r a c t i c e   t h e  H func t ion  is it- 

s e l f   q u i t e   i l l - d e f i n e d .  

The foregoing   d i scuss ion  of t h e   n o t i o n  of a fuzzy  a lgori thm 

w a s  i n t ended   p r imar i ly   t o   po in t  t o  a close  connect ion  between  this   not ion 

and t h a t  of a fuzzy  system. It may w e l l  t u r n   o u t ,  however, t h a t  many 

of t h e  complex  problems - such  as  machine  translation  of  languages - which 

so f a r  have  eluded a l l  attempts t o   s o l v e  them  by convent ional   techniques - 
cannot  be  properly  formulated,  much less so lved ,   wi thout   the   use ,   in   one  

form o r   ano the r ,  of a broader   conceptual  framework i n  which the   no t ion  of 

a fuzzy   a lgor i thm  p lays  a b a s i c   r o l e .  



CHAPTER V 

THE CONCEPT OF AGGREGATE 

As  was  pointed  out in Chapter 2, the  state  of  a  system  may 

be  viewed  as  a  name  for  an  aggregate  of  input-output  pairs.  In  what  fol- 

lows,  we  shall  summarize  some  of  the  principal  notions  relating  to  the 

concept  of an  aggregate,  but  will  leave  open  the  question  of  how  these 

notions  can  be  extended  to  fuzzy  systems. 

As  in  Chapter 2, let  u  and  y  denote  a  pair of sequences 

u = uoul ... u  and  y = yoyl ... y  of  length  t+l,  where,  for  simplicity, 
t is  assumed  to  range  over  non-negative  integers.  If  u = uoul ... u  and t t 

T 
v = v  T+l t' ... v  then  the  concatenation  of  u  and  v is denoted  by uv and 

is  defined  by  uv = uoul ... u v 
T T+l t' ... v 

Definition  of  a  system. A system  (discrete-time  system) a is  defined  as 
a  collection  of  ordered  pairs  of  time-functions  (u,y)  satisfying  the  con- 

dition of closure  under  segmentation o r  CUS  for  short.  Thus, 

where u and  y are,  respectively,  the  input  and  output of 0, and  (u,y)  is 
an  input-output  pair  belonging  to a. The  expression  for  the  CUS  condi- 
tion  is: 

If u = w' and  y = ww' (that is,  u  is  a  concatenation  of  time 

functions  v  and v' and  y  is  a  concatenation  of w and w') and  (u,y) E a, 
then  (v,w) E a and  (v'  ,w') E a. In  effect,  this  condition  requires  that 
every  segment  of  an  input-output  pair  of a be  an  input-output  pair  of ff. 

Comment.  When  we  define  a  system  as  a  collection  of  input-output  pairs, 

we  are  in  effect  identifying  a  physical  system  or  a  mathematical  model  of 



i t  w i t h   t h e   t o t a l i t y   o f   o b s e r v a t i o n s  which  can  be made of i ts  input  and 

output  time-functions.  Furthermore, we t a c i t l y  assume - tha t  w e  have as 

many copies  of  the  system as t h e r e  are d i f f e r e n t   i n i t i a l  states, and t h a t  

each u is a p p l i e d   t o  a l l  t h e s e   c o p i e s ,  so t h a t   t o   e a c h  u correspond as 

many y ' s  as t h e r e  are copies  of  the  system. 

To c h a r a c t e r i z e  a as a c o l l e c t i o n  of  input-output  pairs i t  

is  u s u a l l y  more expedient   to  employ an  a lgori thm  for   generat ing  input-  

ou tpu t   pa i r s   be long ing   t o  a t h a n   t o  l ist  them. From t h i s   p o i n t  of view, 

a d i f f e r e n t i a l   o r   d i f f e r e n c e   e q u a t i o n   r e l a t i n g   t h e   o u t p u t   o f  a sys t em  to  

its input  may be  viewed as a compact way o f   s p e c i f y i n g   t h e   c o l l e c t i o n   o f  

input-output   pairs   which  def ines  a. An algori thm  or   an  equat ion  which 

serves th is   purpose  is ca l led   an   input -output   re la t ion .  - " 

D e f i n i t i o n  of an amzregate. L e t  a < t o )  denote a subset  of  comprising 

those  input-output   pairs   which start  a t  time t . Now suppose we group  to- 

g e t h e r   t h o s e   i n p u t - o u t p u t   p a i r s   i n  act ) which  have some p r o p e r t y   i n  com- 

mon and ca l l  such  groups  bundles  of  input-output  paris.  A s  we s h a l l  see 

p resen t ly ,   t he   agg rega te s  of a are bundles  of  input-output  pairs  with cer- 

t a i n   s p e c i a l   p r o p e r t i e s  which are def ined   in   such  a way as t o  make a s t a t e  

of a merely a name o r  a labe l   for   an   aggrega te   o f  a. 

0 

0 

It is convenient   to  s t a t e  t h e   p r o p e r t i e s   i n   q u e s t i o n  as a set 

of four   condi t ions   def in ing   aggrega tes   o f  a. These  conditions are as 

follows : 

1. Covering  condition. L e t  a gener ic   bundle   o f   input -output   pa i r s   in  

d(t ) be  denoted  by aa (to) , wi th  a. se rv ing  as a n   i d e n t i f y i n g   t a g   f o r  

a bundle. A col lect ion  of   such  bundles  w i l l  be  denoted by {a (to) 1 ,  
a E C , where C is  the  range  of  values  which  can  be assumed  by a a t  

0 0 

OL0 

0 to t 0  0 
A n t i c i p a t i n g   t h a t  a w i l l  p l a y   t h e   r o l e   o f  a state of a, C 

0 
b e   r e f e r r e d   t o  as t h e  state space  of a a t  t i m e  t . Note t h a t  to is a 

var i ab le   r ang ing   ove r   t he   i n t ege r s   0 ,1 ,2 ,  ... . 
" 0 



The c o v e r i n g   c o n d i t i o n   r e q u i r e s   t h a t   t h e   c o l l e c t i o n  { aa (t ) 1 ,  
o o  

a E C , be a cove r ing   fo r  a(to), t h a t  is, 
0 . to 

I n   e f f e c t ,   t h i s   c o n d i t i o n   r e q u i r e s   t h a t   e v e r y   i n p u t - o u t p u t   p a i r   i n  a(to) 
be  included i n  some b u n d l e   i n   t h e   c o l l e c t i o n  { 62 (to) I ,  a. E C 

aO 

2.  Uniqueness  condition. The uniqueness  condition is expressed by 

(u,y) E a (to) and  (u,y') E a (t + y = y ' .  4.5  
aO a. O 

In   o ther   words ,   to   each   input  u i n   t h e  domain of t h e   r e l a t i o n  

aao(to) corresponds a unique  output  y.   (Note  that   the  sequences u and y 

are assumed t o   b e  of t h e  same l eng th . )  

3.  Pref ix   condi t ion .   Cons ider   an   input -output   pa i r   (uu ' ,yy ' )   in  0, (to) 

which is a conca tena t ion   o f   t he   i npu t -ou tpu t   pa i r s   (u ,y )   and   (u ' ,~ ' ) .  The 

expres s ion   fo r   t he   cond i t ion  i s  

0 

(uu ' ,yy ' )  E a, (to) 
0 

Thus, t h i s   c o n d i t i o n   r e q u i r e s   t h a t  

o u t p u t   p a i r   i n  a ( t  ) also be  an 
a. O 

4 .  Continuation  condition. AS i n  - 

4 . 6  

any p r e f i x  ( i .e. ,  (u ,y))  of an  input- 

i npu t -ou tpu t   pa i r   i n  a ( t o ) .  
aO 

the   p receding   condi t ion ,  let  (uu' ,yy')  

be   an   input -output   pa i r   in  a (to), with  (u' , y ' )  s t a r t i n g  a t ,  s ay ,  tl. 

The cont inua t ion   condi t ion  may be  expressed as 
aO 
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where aa, (t ) denotes  a bundle   o f   input -output   pa i r s   s ta r t ing  a t  tl , 1 
with   the   tnders tanding   tha t  a, (tl) is a member o f   t he   co l l ec t ion   o f  

bundles rQa (t  ) I ,  a. E Zto, to = 0,1,2, ..., and t h a t  a1 ranges  over 

- 

1 

0 0  

Informally,   the   cont inuat ion  condi t ion  merely asserts t h a t  

a state a a t  time t is t r a n s f e r r e d  by inpu t  u i n t o  a state a1 a t  time 
0 0 

I n  terms of   the   four   condi t ions   s ta ted   above   the   aggrega tes  

and states of a system  can  be  defined as follows. 

Def in i t i on .  The aggregates  of a are bundles  of  input-output  pairs  of 

a sa t i s fy ing   the   cover ing ,   un iqueness ,   p ref ix   and   cont inua t ion   condi t ions .  

The states of a are names (o r   t ags )  of the   aggrega tes  of a. The set 

of names of the   aggrega tes   o f   input -output   pa i r s   s ta r t ing  a t  t i s  t h e  

s ta te-space of a a t  time t . Usual ly ,   the  s ta te  space C is  assumed 

t o  be  independent of t . 
0 

0 . to 

0 

With the   above   def in i t ions  as the   po in t   o f   depa r tu re ,  one 

can  deduce a l l  of t h e   p r o p e r t i e s  of t he  states and s t a t e  equations  of a 

system  which,   in   the  c lass ical   approach,  are assumed a t  t h e   o u t s e t .  The 

way i n  which t h i s  can  be  done i s  d e s c r i b e d   i n  [8 ]  and, more e x p l i c i t l y  

though i n  lesser d e t a i l ,   i n  [9]. 

In   Chapter  3 ,  we have shown how the  conventional  approach 

i n  which  the  point of depa r tu re  is t h e   d e f i n i t i o n  of a system  through i ts  

state equat ions ( 3 . 1 )  and (3.2), can  be  generalized  to  fuzzy  systems. 

Th i s   na tu ra l ly   g ives  rise to   t he   ques t ion :  How can  the  approach  sketched 

above i n  which t h e   s t a r t i n g   p o i n t  i s  (a) t h e   d e f i n i t i o n  of a system as a 

co l l ec t ion   o f   i npu t -ou tpu t   pa i r s ;   (b )   t he   de f in i t i on   o f   an   aggrega te  as 

a bund le   o f   i npu t -ou tpu t   pa i r s   s a t i s fy ing   ce r t a in   cond i t ions ;  and ( c )  t h e  

d e f i n i t i o n  of a state as a name f o r  an   aggrega te ,   be   s imi la r ly   genera l ized  

to  fuzzy  systems? 
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If  we  could  find an answer  to  this  basic  question,  we  might, 

perhaps,  be  able  to  develop  effective  techniques  for  the  approximate 

analysis  of  complex  systems  for  which  state  equations  cannot  be  postulated 

at  the  outset.  We  state  this  question as an  open  problem  because  its 

solution  can  be  perceived  only  dimly  at  this  rudimentary  stage  of  the 

development  of  the  theory  of  fuzzy  systems. 
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